Real-world evidence (RWE) is health care information derived from real-world data (RWD). It can be generated through various study designs or analyses, including pragmatic clinical trials, observational studies, and health surveys. In the context of RWE, patient recruitment plays a significant role, as the data collected from these individuals helps in understanding the effectiveness, safety, and usage of medical products in the real world.
Traditional Patient Recruitment: In traditional methods, patient recruitment generally happens through methods like physician referrals, media advertising, patient registries, and patient advocacy groups. This method can be time-consuming, costly, and sometimes inefficient, as it often relies on manual efforts. It can also be challenging to find patients who fit specific inclusion and exclusion criteria for a particular study.
AI-Enabled Recruitment: Artificial intelligence (AI) has started transforming patient recruitment in many ways. AI can analyze vast amounts of real-world data from electronic health records (EHRs), medical claims, health surveys, and other digital health platforms to identify eligible patients rapidly. This approach reduces the recruitment timeline and the costs associated with patient enrollment.
AI algorithms can predict the likelihood of patients participating in the study, improving the precision of recruitment. They can also monitor and analyze patient behavior, enabling the refinement of recruitment strategies in real-time. AI can further enhance the diversity of recruited patients by considering a wide range of demographic and geographic factors, leading to a more inclusive and representative study.
AI-enabled recruitment can also help in mitigating potential biases in patient selection by utilizing a data-driven approach. By analyzing historical clinical trial data, AI models can identify patterns and biases in previous studies and correct them in future ones. Furthermore, AI can help in patient retention by predicting the potential drop-out risks and enabling timely intervention.
In conclusion, while traditional methods are essential and remain relevant in certain contexts, AI-enabled recruitment offers the possibility of increased speed, reduced costs, and improved diversity and representativeness of patients in studies generating real-world evidence.
Share this story...
Real World Evidence (RWE) 101 – ICH GCP (R3) – Real World Evidence Context
RWE 101 - ICH GCP (R3) - Real World Evidence Context Revision 2 of ICH GCP caused confusion to those of us who work with non-interventional studies. The glossary [...]
Real World Evidence (RWE) 101 – Non-Interventional Studies vs Market Health Research
RWE 101 - Non-Interventional Studies vs Market Health Research Key differences between a non-interventional study (NIS) and market health research include:1. Research Objective: NIS are conducted to examine real-world [...]
Real World Evidence (RWE) 101 – Real World Evidence (RWE) 101 – Audits vs Inspections
RWE 101 - Real World Evidence (RWE) 101 - Audits vs Inspections In the context of regulatory compliance for Real-World Evidence (RWE), both audits and inspections play crucial roles, [...]
Real World Evidence (RWE) 101 – A Career of Many Pathways
RWE 101 - A Career of Many Pathways Real-world evidence (RWE) refers to the information on health care that is derived from analysis of real-world data (RWD). RWE [...]
Real World Evidence (RWE) 101 – Evolution of Regulatory Affairs
RWE 101 - Evolution of Regulatory Affairs Real-world evidence (RWE) and real-world data (RWD) are increasingly influencing regulatory affairs in the biopharmaceutical and healthcare industry. This change has been [...]
Real World Evidence (RWE) 101 – Project Managers
RWE 101 - Project Managers Real-World Evidence (RWE) observational studies and clinical trials are both key elements of medical research, but they involve very different methodologies, aims, and requirements. [...]