Secondary use of existing data refers to the practice of analyzing data that was collected for a different purpose than the current research question. This approach is becoming increasingly popular in real-world research because of the large amounts of data that are available through various sources, such as electronic health records, administrative databases, and social media.
In many cases, secondary data analysis can provide valuable insights and answer research questions that would otherwise be difficult or impossible to answer with primary data collection. For example, researchers can use existing data to study disease trends, evaluate the effectiveness of health interventions, and identify risk factors for various health outcomes.
Secondary data analysis can also be more cost-effective than primary data collection, as the data has already been collected and often comes at a lower cost than conducting a new study. Additionally, secondary data analysis can allow researchers to study topics that may not have been feasible to study with primary data collection due to ethical or practical limitations.
However, there are also potential limitations to secondary data analysis, such as the lack of control over the quality and accuracy of the data, and the potential for biases and confounding factors that were not accounted for in the original data collection. Therefore, researchers must carefully evaluate the suitability of existing data for their research question and take steps to address any limitations or potential biases in the data.
Share this story...
Real World Evidence (RWE) 101 – ICH GCP (R3) – Real World Evidence Context
RWE 101 - ICH GCP (R3) - Real World Evidence Context Revision 2 of ICH GCP caused confusion to those of us who work with non-interventional studies. The glossary [...]
Real World Evidence (RWE) 101 – Non-Interventional Studies vs Market Health Research
RWE 101 - Non-Interventional Studies vs Market Health Research Key differences between a non-interventional study (NIS) and market health research include:1. Research Objective: NIS are conducted to examine real-world [...]
Real World Evidence (RWE) 101 – Real World Evidence (RWE) 101 – Audits vs Inspections
RWE 101 - Real World Evidence (RWE) 101 - Audits vs Inspections In the context of regulatory compliance for Real-World Evidence (RWE), both audits and inspections play crucial roles, [...]
Real World Evidence (RWE) 101 – A Career of Many Pathways
RWE 101 - A Career of Many Pathways Real-world evidence (RWE) refers to the information on health care that is derived from analysis of real-world data (RWD). RWE [...]
Real World Evidence (RWE) 101 – Evolution of Regulatory Affairs
RWE 101 - Evolution of Regulatory Affairs Real-world evidence (RWE) and real-world data (RWD) are increasingly influencing regulatory affairs in the biopharmaceutical and healthcare industry. This change has been [...]
Real World Evidence (RWE) 101 – Project Managers
RWE 101 - Project Managers Real-World Evidence (RWE) observational studies and clinical trials are both key elements of medical research, but they involve very different methodologies, aims, and requirements. [...]